
Wait for your fortune
without blocking!

© Roman Elizarov, Devexperts, 2016



Why concurrency?
• Key motivators

- Performance
- Scalability

• Unless you need both, don’t 
bother with concurrency:
- Write single-threaded
- Scale by running multiple 

copies of code

Thread 1

Thread 2

Thread N

Shared 
Object

Practical examples:
queue, cache, 
dictionary, state, 
statistics, log, etcShare nothing and 

sleep well



What is blocking? 

What is non-blocking algorithm? 



Blocking (aka locking)
• Semi-formally

• In Java practice non-blocking algorithms
- just read/write volatile variable and/or use
- j.u.c.a.AtomicXXX classes with compareAndSet and other methods

• Blocking algorithms (with locks) use
- synchronized (…) which produces monitorEnter/monitorExit instrs
- j.u.c.l.Lock lock/unlock methods
- NOTE: You can code blocking without realizing it

An algorithm is called non-blocking (lock-free)
if suspension of any thread cannot 
cause suspension of another thread



Toy problem solved with locks

Locks are the easiest way to 
make your object linearizable

(aka thread-safe)

Just protect all operations on 
a shared state with the same 

lock (or monitor)

1

2

3



What is waiting [for condition]? 

What is waiting operation? 

sometimes aka “blocking”, too L



Waiting for condition
• Formally

• For example, let’s implement partial takeValue operation that is 
defined only when there is value != null in DataHolder

• Waiting is orthogonal to blocking/non-blocking

Partial function
from object state set X to result set Y 
is defined only on a subset of X’ of X. 
Method invocation can complete only 

when object state is in X’
(when condition is satisfied).



Waiting is easy with monitors

1

2

If in doubt, always use notifyAll instead 
of notify (but can use notify here)

This is code with locks (synchronized): 
suspension of one thread on any of these 

lines causes suspension of all other 
threads that attempt to do any operation 

This is waiting code (partial function): 
it is only defined when value != null



Why go non-blocking (aka lock-free)?

• Performance
- Locking is expensive when contended
- Actually, context switches are expensive

• Dead-lock avoidance
- Too much locking can get you into trouble
- Sometimes it is just easier to get rid of locks 



Let’s go lock-free

1

2

3

4



Lock-free partial operations (waiting aka parking)

2

3

4

1



Lock-free wakeup (aka unparking)

• Note: in lock-free code order is important (first update, then unpark)
• Updaters are 100% wait-free (never locked out by other threads)
• Taker (takeValue) can get starved in CAS loop, but still non-

blocking (formally, lock-free)



Park/unpark magic

LockSupport.unpark(T): “Makes available 
the permit for the given thread, if it was not 
already available. If the thread was blocked 
on park then it will unblock. Otherwise, its 
next call to park is guaranteed not to block.”

U update state unpark(T)

updateValue

T check state park()

takeValue

^ value == null



Lock-free waiting from different/multiple threads

• Must maintain wait queue of threads in a lock-free way
- This is a non-trivial

• j.u.c.l.AbstractQueuedSynchronizer is a good place to start
• It is used to implement a number of j.u.c.* classes:

- ReentrantLock
- ReentrantReadWriteLock
- Semaphore
- CountDownLatch

• You can use it to for your own needs, too



Anatomy of AbstractQueuedSynchronizer
int state; // optionally use for state
wait queue <Node>; // nodes reference threads

int getState()
void setState(int newState)
boolean compareAndSetState(int expect, int update)

boolean tryAcquire(int arg)
boolean tryRelease(int arg)
int tryAcquireShared(int arg)
boolean tryReleaseShared(int arg)

void acquire(int arg)
void acquireInterruptibly(int arg)
boolean tryAcquireNanos(int arg, long nanos)
boolean release(int arg)
void acquireShared(int arg)
// and others

1
private state

2
state access

3
override

4
use

almost 
separate 
aspects



Anatomy of AbstractQueuedSynchronizer (2)

1

3

2 adds to 
wait queue

4
unlinks from 
wait queue



Our own synchronizer

1

2

3



Use synchronizer to implement notify/wait

1

2

3



Why double check? (more internals)
void doAcquireXXX(int arg) {

addToWaitQueue();
for (;;) {
if (isFirstInQueue() && tryAcquire(arg)) {

unlinkFromWaitQueue(); return;
}
doPark();

}
}

U update state release -> unparkSuccessor()

updateValue

T tryAcquire unlinkFromWaitQueue()

takeValue

^ CAS(value, oldValue, null)

Simplified code



Naïve “performance improvement”

• The idea is to unpark just one thread when setting value for the first 
time only (and avoid unparking on subsequent updates)

• DOES NOT WORK SUBTLY: updateValue may cause concurrent 
tryAcquire to fail on CAS and park, but we don’t call release in this 
case anymore, so it will never unpark 
.

1

2



Corrected Sync.tryAcquire method

• Use CAS-loop idiom to retry in the case of contention
• Optimal version in terms of context switching

1

2



This is optimal, but not fair!
• Let’s take a closer look at AQS.acquireXXX

• Thread might jump ahead of the queue
- Good or bad? – depends on the problem being solved



Make it fair (if needed)



Conclusion

• Waiting can be implemented in a non-blocking way
- Recap non-blocking: suspension of any thread (on any line of code) 

cannot cause suspension of another thread
- Bonus: context switch only when really need to wait & wakeup
- Fairness: is an optional aspect of waiting

• AbstractQueuedSynchronizer
- is designed for writing custom lock-like classes
- but can be repurposed as a ready wait-queue impl for other cases

Lock-free programming is 
extremely bug-prone



Thank you

Slides are available at elizarov.livejournal.com
Twitter at @relizarov


