Hotspot & AOT

Now it's time to compile

Dmitry Chuyko

Java SE Performance Team
April 22, 2016




Contents

1. Introduction

2. The Current Situation

3. Ahead-of-time Compilation
4. Graal

5. JVM Compiler Interface

6. Artifacts

Copyright © 2016, Oracle and /or its affiliates. All rights reserved.

2/37



Safe Harbor Statement

The following is intended to outline our general product direction. It is intended
for information purposes only, and may not be incorporated into any contract. It
is not a commitment to deliver any material, code, or functionality, and should
not be relied upon in making purchasing decisions. The development, release, and
timing of any features or functionality described for Oracle's products remains at

the sole discretion of Oracle.

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 3/37



Introduction

< Java:
Copyright © 2016, Oracle and/or its affiliates. Al rights reserved 4/31



Reminder: It's 2016

* JDK 9 Early Access
https://jdk9.java.net/

* JDK 8u
* JDK 7 End of Public Updates in April 2015



https://jdk9.java.net/

Overview: Computing
A long time ago in a galaxy far, far away...

* Pre-computer machines appeared

* Computers and their machine codes
* Languages and compilers

* Scripts

* Computer science

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 6/37



Overview: Java

* Is a language
* Set of specifications

* Used to be called slow
"Because it's interpreted”
(not true)

* "Write once, run anywhere”
(true)

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 7/37



Overview: JVM

* Is a code itself
* Can dynamically execute arbitrary correct bytecode

Copyright © 2016, Oracle and /or its affiliates. All rights reserved. 8/37



Overview: JVM

* Is a code itself

* Can dynamically execute arbitrary correct bytecode
* May be written in anything

* May produce native code and re-use the result

Copyright © 2016, Oracle and /or its affiliates. All rights reserved. 8/37



The Current Situation

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 9/37



Overview: Hospot

*Is a JVM

* Written in C++

* Native shared libraries (libjvm)

* Produces bytecode dynamically for its own purposes
* Does just-in-time compilation

* Supports many modes

— Garbage collectors
— Pointers encoding
— etc.

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 10/37



Overview: JIT in Hotspot

* Tiered compilation

— Level 0. Interpreter

— Level 1. C1 without profiling (optimized), terminal
— Level 2. C1 with basic profiling

— Level 3. C1 with full profiling

— Level 4. C2, terminal, expensive

* Unused method versions are thrown away to save footprint
* Optimizations, resource constraints
— = de-optimizations to level 0

* All modes (if not switched off), CPU instruction set
— Custom code

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 11/37



Problem: Application Warm-up

Time, ms

8000

7000

6000

5000

4000

3000

2000

1000

4 Tiered

[terative workload
* Startup time

* Time to
performance

S

10

15

20

Iteration

25

30 35 40 45

Copyright © 2016, Oracle and /or its affiliates. All rights reserved. 12/37



Problem: Application Latency

* Where is a line for interpreter?

Copyright © 2016, Oracle and /or its affiliates. All rights reserved. 13/37



Problem: Application Latency

* Where is a line for interpreter?
* ~ onslide 7

Copyright © 2016, Oracle and /or its affiliates. All rights reserved. 13/37



Problem: Application Latency

* Where is a line for interpreter?
* &~ on slide 7
* Level 1 (C1) is relatively also slow

Copyright © 2016, Oracle and /or its affiliates. All rights reserved. 13/37



Problem: Application Latency

* Wish it to be HFT. ..

@Transactional void buyOrSell(Quote quote)

Copyright © 2016, Oracle and /or its affiliates. All rights reserved. 14/37



Problem: Application Latency

* Wish it to be HFT. ..

@Transactional void buyOrSell(Quote quote)
— De-optimization when flow changes
— Training workloads
* And you meet

void buy_or_sell [[db:transactional]] (Quote* quote)

CFLAGS_ALL += -03

Copyright © 2016, Oracle and /or its affiliates. All rights reserved. 14/37



Problem: Bootstrapping

Meta-circular implementations

* It's possible to write JVM in Java, Scala or JavaScript

* "My dear JVM existing as bytecode image, please start and
make yourself efficient in execution of bytecode. Quickly”

* Actually the 3 problems above

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

15/37



Ahead-of-time Compilation

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 16/37



Solution: Startup time

* Pre-compile initialization code

— No interpreter for class loading, reflection etc.
— No resources for compilation

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 17/37



Solution: Time to performance

* Pre-compile critical code

— Start with much better than interpreter performance
— No resources for compilation
* Reach peak performance
— Collect same profiling info
— JIT with profile-guided optimizations

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 18/37



Solution: Latency

* Pre-compile critical code
— High and stable performance
. Optimizations
— No de-optimization (almost)
— No re-compilation (almost)

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 19/37



Solution: Density, Power Consumption
For free

* Some critical code is pre-compiled
* Share it

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 20/37



Pre-compilation: Different Solutions Exist

* AOT whole application to native executable

— Native exe/elf

— Trial runs for better image layout
— Bundled or shared VM

— Deep dependency analysis

— Pre-defined mode

— JIT is secondary

* VM with JIT and AOT compilers

— Optional cache for class data and code
— Trial runs for methods filtering

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

21/37



Pre-compilation: For Hotspot

* Need to generate code

— Mostly no de-optimizations
— Better than C1

* No tight time budget
* Need to resolve and load generated code

Copyright © 2016, Oracle and /or its affiliates. All rights reserved. 22/37



Pre-compilation: For Hotspot

* Need to generate code

— Mostly no de-optimizations
— Better than C1

* No tight time budget
* Need to resolve and load generated code
* How about one more compiler?

Copyright © 2016, Oracle and /or its affiliates. All rights reserved. 22/37



Graal

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 23/37




Graal: Project

* Experimental dynamic compiler written in Java

* Supports Java

* OpenJDK project
http://openjdk.java.net/projects/graal /

* Oracle Labs team

* GraalVM based on Hotspot

http://www.oracle.com /technetwork /oracle-labs/program-
languages/overview/index.html

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 24/37


http://openjdk.java.net/projects/graal/
http://www.oracle.com/technetwork/oracle-labs/program-languages/overview/index.html
http://www.oracle.com/technetwork/oracle-labs/program-languages/overview/index.html

Graal: For AOT

* It proven to work
— SubstrateVM
* Flexible and handy

— Modular
— Annotation based way

* Possible to avoid most de-optimizations

— No speculative optimizations
— Compile all paths

* Focused on performance

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 25/37



Graal: For AOT

* It proven to work
— SubstrateVM
* Flexible and handy

— Modular
— Annotation based way

* Possible to avoid most de-optimizations

— No speculative optimizations
— Compile all paths

* Focused on performance
* How does it interact with Hotspot?

Copyright © 2016, Oracle and /or its affiliates. All rights reserved. 25/37



JVM Compiler Interface

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 26/37



JEP 243: Java-Level JVM Compiler Interface

* OpenJDK feature, already in 9
http://openjdk.java.net/jeps/243
* Experimental feature

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

27/37


http://openjdk.java.net/jeps/243

JEP 243: Goals

* Allow the JVM to load Java plug-in code to examine and
intercept JVM JIT activity.

* Record events related to compilation, including counter
overflow, compilation requests, speculation failure, and
deoptimization.

* Allow queries to relevant metadata, including loaded classes,
method definitions, profile data, dependencies (speculative
assertions), and compiled code cache.

* Allow an external module to capture compilation requests and
produce code to be used for compiled methods.

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 28/37



JVMCI: Graal as C2 Replacement

-XX:+EnableJVMCI -XX:+UseJVMCICompiler -Djvmci.Compiler=graal

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 29/37



JVMCI: Details

* Not used for C1, C2

* Special module jdk.vm.ci
* Familiar extension patterns
— CompilerFactory, StartupEventListener,

HotSpotJVMCIBackendFactory, HotSpotVMEventListener. . .

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

30/37



JVMCI: How it works

Hotspot
* Compilation Queue

* Metaspace
* Code Cache

JVMCI Compiler
* Compilation Request
* jdk.vm.ci.meta
* byte]]

Copyright © 2016, Oracle and /or its affiliates. All rights reserved.

31/37



Artifacts

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 32/37



Code: AOT Modes

* Targeted at problem

— Tiered. Similar to Level 2
— Non-Tiered — Latency

* Targeted at VM mode

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 33/37



Code: Libraries

* Native shared library (ELF DSO)

— OS knows how to treat it right
— Compatible with tools

* Modified Hotspot that works with compiled methods from
shared libraries

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 34/37



Code: libjava.base.so

» Code
= RW
= Other

Copyright © 2016, Oracle and /or its affiliates. All rights reserved. 35/37



Packaging: Self-contained Apps

800 S Ensemble2

Copyright © 2016, Oracle and /or its affiliates. All rights reserved. 36/37



Packaging: Self-contained Apps

* Java Packager

— Prepares fancy .dmg for shiny Mac
— Bundled with 100 Mb JRE

* JEP 275: Modular Java Application Packaging
http://openjdk.java.net/jeps/275
— jlink helps to generate a JRE image with the required modules only

— Extensions
— AOT libs can be created and added

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

37/37


http://openjdk.java.net/jeps/275

	Introduction
	Reminder:
	Overview:

	The Current Situation
	Overview:
	Problem:

	Ahead-of-time Compilation
	Solution:
	Pre-compilation:

	Graal
	Graal:

	JVM Compiler Interface
	JEP 243:
	JVMCI:

	Artifacts
	Code:
	Packaging:


