
DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

The	C++	and	CLR
Memory	Models

Sasha	Goldshtein
CTO,	Sela Group

@goldshtn

1

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

Assumptions
• You	are	a	C++/C#	developer
• You	write	multithreaded	code	(who	doesn’t?)
• You	care	about	the	correctness	of	your	code

• You	might	have	gotten	used	to	the	nurturing	embrace	of	x86,	but	now	
you	have	to	make	sure	your	code	is	correct	in	the	fiery,	dangerous	pits	
of	ARM	as	well

2

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

Agenda
• Atomicity,	exclusivity,	and	ordering
• What	does	“memory	model”	even	mean?
• Examples	of	memory	reorderings
• Volatile	and	atomic	variables
• Examples	of	broken	code	and	how	to	fix	it

This	is	genuinely	a	level-400	talk.	Viewer	discretion	is	advised.	Rated	R
because	of	frequent	mentions	of	memory	barriers	and	reorderings.

3

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

Atomicity,	Exclusivity,	and	
Ordering

4

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

Atomicity
• An	atomic	operation	is	non-interruptible
• Partial	reads/writes	or	context	switches	aren’t	allowed

• On	Intel	x86-64	processors,	aligned reads	and	writes	of	≤64-bit	values	
are	atomic
• Many	“trivial”	operations,	especially	with	non-optimizing	compilers,	
are	not	atomic
Original source code Resulting x86-64 instructions
++globalVar; mov rax, qword ptr [globalVar]

add rax, 1
mov qword ptr [globalVar], rax

5

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

Atomicity	Does	Not	Guarantee	Exclusivity
• A	non-interruptible	operation	still	does	not	guarantee	exclusive	
access	to	memory

CPU	1 CPU	2

inc qword ptr [gv] inc qword ptr [gv]

L1	cache L1	cache

L2	cache

gv==0 gv==0

Store	buffer Store	buffer
gv==0

write(gv,1) write(gv,1)

6

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

Exclusivity
• LOCK:	Require	exclusive	access	to	memory
• In	the	past,	achieved	by	locking	the	memory	bus
• Currently,	achieved	by	marking	the	cache	line	in	exclusive	mode

CPU	1 CPU	2

lock inc qword ptr [gv] lock inc qword ptr [gv]

L1	cache L1	cache

L2	cache

gv==0 gv evicted

Store	buffer Store	buffer
gv==0

write(gv,1)

7

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

Ordering
• Atomicity	does	not	guarantee	ordering
• As	we	will	see	later,	some	memory	loads/stores	may	be	reordered
• E.g.,	stores	may	become	visible	to	other	processors	after subsequent	loads	
retire

• Processors	may	disagree	on	a	variable’s	value
• A	processor	may	see	its	own	writes	before other	processors	see	them

8

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

Complex	Relationships

atomicity

ordering

exclusivity

9

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

Memory	Ordering

10

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

Memory	Ordering
• Question:	Does	the	computer	execute	the	program	you	wrote?
• No
• Compilers,	processors,	and	memory	controllers	issue	memory	
operations	in	a	different	order
• It’s	not	malicious,	it’s	an	optimization!

11

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

Compiler	Reordering
• Hmm,	it	sounds	like	you’re	reading	that	array	element	many	times	
inside	the	loop…
• Let	me	hoist	that	read	out	of	the	loop	for	ya!
• Sounds	like	a	nice	optimization,	right?

int sum = 0;
int p = get_pivot();
for (int i = 0; i < p; ++i)
{
sum += data[i] * data[p];

}

12

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

Compiler	Reordering
• Automatic	vectorization is	essentially	compiler	reordering

// original code:
for (int i = 0; i < n; ++i) {
dst[i] = src[i];

}

// vectorized (and therefore reordered):
for (int i = 0; i < n; i += 16) {
auto val = _mm_stream_load_si128((__m128i*)&src[i]);
_mm_stream_si128((__m128i*)&dst[i], val);

}

13

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

Compiler	Reordering
• Read	elimination	is	a	fairly	common	optimization

// original code:
if (arg1 == 0) throw new ArgumentException();
int val = arg2 + 1;
val += arg1;

// optimized (reordered) code:
int tmp = arg1;
if (tmp == 0) throw new ArgumentException();
int val = arg2 + 1;
val += tmp;

14

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

Compiler	Reordering
• How	about	this	reordering?

// original code:
void enqueue(X new_element) {
bounded_queue_[++last] = new_element;
locked_ = 0;

}

// reordered:
void enqueue(X new_element) {
locked_ = 0;
bounded_queue_[++last] = new_element;

}

15

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

Out-Of-Order	Execution
• Processors	have	deep	execution	pipelines	designed	to	execute	
instructions	in	parallel
• This	may	cause	reordering;	specifically,	reordering	of	memory	
operations

Time 0 1 2 3 4 5
ADD DWORD PTR [EAX], ECX ML ALU MS
ADD ECX, DWORD PTR [EBX] ML ALU
ADD DWORD PTR [EDX], ESI ML ALU MS

ADD EDI, 1 ALU

16

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

Caches
• Caches	and	store	buffers	can	dramatically	delay	memory	writes	and	
speed	up	memory	reads

CPU Socket

Main Memory

Memory Controller

L3 Cache

CPU Core CPU Core

L2 Cache

L1 Cache

L2 Cache

L1 Cache4 cycles
32 KB10
cycles
256
KB
40

cycles
4-16
MB

>100 cycles
1 GB – 1 TB

Cache Line
Cache Line

Store
Buffer

Store
Buffer

17

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

What	Kinds	of	Reorderings Are	Permissible?
• Data	dependencies	must	be	honored
• E.g.,	same	thread	writes	X	=	1,	then	reads	X:	gets	1

• Compilersmay	reorder	any	memory	access	under	the	as-if rule
• Processors have	different	guarantees

x86,	x86-64 ARMv7,	IA64 SPARC PSO
Loads	after loads No Yes No
Loads	after	stores No Yes No
Stores	after stores No Yes Yes
Stores	after	loads Yes Yes Yes

18

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

Demo:	Spin-lock	sensitivity	on	
ARM	vs.	x86-64

19

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

Reordering,	Example	1
• Assuming	g_p is	widget*…
• Thread	1	may	see	g_p non-null,	but	only	partially	initialized

Thread 1 Thread 2

if (g_p != nullptr) g_p = new widget();
{
g_p->do_work();

}

Writes	performed	by	widget’s	
constructor	aren’t	necessarily	
visible	here;	broken	on	ARM	

and	SPARC	PSO

20

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

Reordering,	Example	2
• Thread	2	may	see	complete as	true,	but	value would	not	be	
initialized,	or	only	partially	initialized

Thread 1 Thread 2

value = SomeComputation(); if (complete)
complete = true; {

Use(value);
}

21

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

Reordering,	Example	3
• Peterson’s	algorithm	for	synchronization
• Assuming	flag1,	flag2 are	initialized	to	0

Thread 1 Thread 2

START1: flag1 = 1; START2: flag2 = 1;
if (flag2 == 0) { if (flag1 == 0) {
critical section critical section

} else { } else {
flag1 = 0; flag2 = 0;
goto START1; goto START2;

} }

Store	can	pass	load,	so	both	threads	
see	the	other’s	flag	as	0	and	enter	the	
critical	section;	broken	even	on	x86!!!

22

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

Demo:	Peterson’s	algorithm

23

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

Sequential	Consistency
• Sequential	consistency	(SC)
• The	result	of	any	execution	(reads	and	writes)	on	multiple	processors	requires	
that	the	operations	of	each	individual	processor	execute	in	the	order	specified	
by	the	program

• SC	is	often	incredibly	expensive	and	precludes	important	
optimizations
• Modern	compilers	and	processors	do	not	offer	sequential	consistency	
by	default

24

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

SC-DRF
• Race	conditions
• A	memory	location	can	be	accessed	simultaneously by	two	threads,	one	of	
which	is	a	writer

• Sequential	consistency	for	data	race	free	programs	(SC-DRF)
• Executing	reads	and	writes	in	program	order,	as	long	as	you	don’t	have	a	race	
condition
• Hardware	promises	sequential	consistency	if	you	obey	the	constraints	and	
don’t	write	race	conditions

25

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

Memory	Models
• The	C++11	memory	model	offers	SC-DRF
• Compiler	doesn’t	take	care	of	preventing	processor	reorderings;	semantics	
are	hardware-dependent
• Provides	facilities	for	ensuring	undesired	reorderings do	not	occur

• The	CLR	memory	model	…	which	one?	J
• ECMA	CLI	allows	all	reorderings,	Microsoft	CLR	implementation	precludes	
store-store	reorderings
• Provides	facilities	for	ensuring	undesired	reorderings do	not	occur

26

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

Good	Fences	Make	Good	
Neighbors

27

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

volatile
• In	C++:
• Volatile	variables	prevent	compiler	reorderings of	reads	and	writes	(to	these	
variables),	and	some	other	optimizations
• Volatile	variables	do	not	prevent	processor	reorderings (although	in	some	
versions	they	used	to	¯_(ツ)_/¯)

• In	C#:
• Volatile	variables	additionally prevent	processor	reorderings,	producing	
unidirectional	barriers

28

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

Processor	Memory	Barriers
• A	full	barrier	prevents	all	reads	and	writes	from	passing	the	barrier	(in	
any	direction)
• That’s	more	than	what	we	need	in	this	case:

Thread 1 Thread 2

if (g_p != nullptr) auto temp = new widget();
{ MemoryBarrier();
g_p->do_work(); g_p = temp;

}

29

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

Processor	Memory	Barriers
• In	C#,	Thread.MemoryBarrier is	a	full	barrier
• Volatile.Read,	 Volatile.Write,	 and	accessing	volatile
variables	produce	unidirectional	barriers

Thread 1 Thread 2

flag1 = 1; flag2 = 1;
Thread.MemoryBarrier(); Thread.MemoryBarrier();
if (flag2 == 0) { if (flag1 == 0) {
critical section critical section

} }
else handle_contention(); else handle_contention();

30

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

Other	Forms	of	Barriers
• Operations	on	synchronization	mechanisms	are	memory	barriers	
(usually	unidirectional)
• Operations	on	std::atomic variables	are	memory	barriers	(usually	
unidirectional)

sync is some CLR object z is std::atomic<int>

Monitor.Enter(sync); z = 42;
++x;
Monitor.Exit(sync);

31

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

std::atomic
• Portable	API	for	low-level	memory	operations
• Atomic:	no	torn	reads	or	torn	writes
• Ordered:	acquire/release	and	additional	memory	ordering	guarantees

• Suppose	value and	done are	std::atomics:
Thread 1 Thread 2

value = long_calculation(); if (done) {
done = true; do something with value

}

32

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

Pitfall:	Release	Barrier	Followed	by	Acquire	Barrier
• Imagine	flag1 and	flag2 are	std::atomic<int> or	C#	volatile	
variables
• These	instructions	can	still	reorder!

Thread 1 Thread 2

flag1 = 1; flag2 = 1;
if (flag2 == 0) { if (flag1 == 0) {
critical section critical section

} }
else handle_contention(); else handle_contention();

33

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

Bonus	Examples

34

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

Thread-Safe	Singleton:	C++,	BAD
static T* instance_ = nullptr;

static T* get_instance() {
if (instance_ == nullptr) {
instance_ = new T();

}
return instance_;

}

35

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

Thread-Safe	Singleton:	C++,	STILL	BAD
static T* instance_ = nullptr;
static std::mutex protector_;

static T* get_instance() {
if (instance_ == nullptr) {
protector_.lock();
instance_ = new T();
protector_.unlock();

}
return instance_;

}

36

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

Thread-Safe	Singleton:	C++,	STILL	BAD
static T* instance_ = nullptr;
static std::mutex protector_;

static T* get_instance() {
if (instance_ == nullptr) {
protector_.lock();
if (instance_ == nullptr) {
instance_ = new T();

}
protector_.unlock();

}
return instance_;

} 37

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

Thread-Safe	Singleton:	C++,	STILL	BAD
static T* instance_ = nullptr;
static std::mutex protector_;

static T* get_instance() {
if (instance_ == nullptr) {
std::lock_guard<std::mutex> lock{ protector_ };
if (instance_ == nullptr) {
instance_ = new T();

}
}
return instance_;

}

38

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

Thread-Safe	Singleton:	C++,	STILL	BAD
static volatile T* instance_ = nullptr;
static std::mutex protector_;

static T* get_instance() {
if (instance_ == nullptr) {
std::lock_guard<std::mutex> lock{ protector_ };
if (instance_ == nullptr) {
instance_ = new T();

}
}
return instance_;

}

39

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

Thread-Safe	Singleton:	C++,	WHEW
static std::atomic<T*> instance_{ nullptr };
static std::mutex protector_;

static T* get_instance() {
if (instance_ == nullptr) {
std::lock_guard<std::mutex> lock{ protector_ };
if (instance_ == nullptr) {
instance_ = new T();

}
}
return instance_;

}

40

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

Thread-Safe	Singleton:	C++
// Requires fully-conformant C++11 compiler

// Supported by VC++ since Visual Studio 2015

static T& get_instance() {
static T instance;
return instance;

}

41

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

One	More	Example…
struct SpinLock_DO_NOT_USE
{
private bool _locked;
public void Lock()
{
while (Interlocked.Exchange(ref _locked, true)) ;

}
public void Unlock()
{
_locked = false;

}
}

Does	_locked need	to	be	volatile?	Or,	
does	this	line	require	Volatile.Write?

42

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

“volatile Is	Like	lock”
• Myth:	For	small	types	like	ints you	don’t	need	a	full-blown	lock,	just	
use	volatile

• Reality:	protected is	like	delegate

43

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

“Use	volatile To	Avoid	Race	Conditions”
• Myth:	If	you	apply	volatile to	the	right	variables,	you	don’t	need	
synchronization	mechanisms	and	won’t	have	race	conditions

• Reality:	Use	kerosene	to	put	off	a	fire

44

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

Summary
• Here	be	dragons!
• If	possible,	try	to	hide	behind	someone	else’s	synchronization	
primitives

45

DotNext SPb 2016 @goldshtn https://s.sashag.net/dnspb12

Thank	You!
Sasha	Goldshtein

@goldshtn

46

