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Common Scalability Practices 
that just work



Scalability as teenage sex

▪ Everyone talks about it 
▪ Nobody really knows how to do it 
▪ Everyone thinks everyone else is doing it 
▪ So everyone claims they are doing it...

Yes

Yes
Mmm

NEED



Domain and app matching

No product or technology can magically make a system scalable and usable. 

▪ Not because you save data to the cloud, your app  
survives thousands of concurrent users.  

▪ Not because of HTML5 users will enjoy the application. 



Scalability

System's ability to handle a growing number of requests without incurring in significant performance loss and 
failures. 

Scalability became a problem with the advent of web



Queuing theory

A queue forms when frequency at which requests for a service are placed exceeds the time it takes to fully serve 
a pending request.

❑ It’s about the performance of a single task 
❑ It’s about expanding the system to perform more tasks at 

the same time



Ensure the system…

▪ Doesn’t crash at launch 
▪ Gives signs of degrading performance timely

Make sure you know the most common tools and 
strategies to address scalability needs.



Strategies



Vertical vs. Horizontal



Vertical 

Norm for 20 years – so long as DB was central point 
Doesn’t scale beyond a point 

Front caching is a good way to do it   
• Proxy servers with load balancing capabilities 
• Working outside the core code of the application 
• Squid, Varnish, Nginx



Horizontal 

Mostly an architectural point 

Critical parts can be expanded without 
• Damaging other parts  
• Introducing inconsistencies / incongruent data



Horizontal 

LOAD 
BALANCING

MULTIPLE 
INSTANCES

DATA 
SHARDING



Real-world

Cloud apps are probably the easiest and most 
effective way to achieve forms of scalability today. 

But, at the same time, you can have well responsive 
apps without re-architecting for the cloud.



Common Practices



Operational Practice #1

Remove bottlenecks 
• Convoluted queries 
• Long initialization steps 
• Inefficient algorithms

HIGH throughput

MEDIUM cost

TIME consuming

DELICATE



Operational Practice #2

Move “some” requests to other servers 
• CDN for static files 
• Geographically distributed sites

LOW throughput

LOW cost

Quick

Improves the user’s perception of the system



Operational Practice #3

Output Caching 
• By param 
• By locale 
• By custom data 

      for example, multi-tenant sites

MEDIUM throughput

LOW cost

Quick

MEDIUM risk



Operational Practice #4

Data Caching 
• Problematic with farms 
• Auto-updatable internal cache 
• Use of distributed caches 
           Redis, ScaleOut, NCache

HIGH throughput

MEDIUM cost

Relatively Quick

DELICATE



Operational Practice #5

Proxy caching   for example Varnish 
• Installed in front of any web site 
• Fully configurable  
• Cache and load balancer in one

HIGH throughput

Relatively LOW cost

Relatively Quick



Architectural Practice #1

CQRS Architecture 
▪ Optimize stacks differently HIGH throughput

HIGH cost

Time consuming



Presentation layer
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Domain layer

Presentation layer

Application layer

Infrastructure layer

CQRS

Commands Queries

Domain layer

Data  
access 

+ 
DTO

Message-based business logic implementation 
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Architectural Practice #2

Single-tier and stateless server 
• One server 
• No session state 
• Quick and easy to duplicate 
• Behind a load balancer

HIGH throughput

Low cost

Quick



The point of the cloud



Architectural Practice #3

Cloud support 
▪ On-demand servers 
▪ Pay per use 
▪ Configure easily 
▪ No middleware costs 
▪ Better failure policies
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Architectural Practice #4

Session state out of the server 
• Client cookies if applicable 
• Distributed cache 
• Azure blob storage

HIGH throughput

MEDIUM cost

Relatively quick

Tricky

PS: Best option for ASP.NET is probably using the Redis-based 
provider for out-of-process session state.



Architectural Practice #5

Be aware of NoSQL and polyglot persistence 
• Relational is OK … until it works 
• Sharding/growth of data

Azure SQL 
+ Many small tables <500GB each 
+ No extra license costs 
+ Zero TCO 
+ HA automatically on

SQL Server in a VM 
+ Fewer large tables >500GB each 
+ Reuse existing licenses 
+ More machine resources 
+ HA and management is your own



FOLLOW
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