
Dino Esposito

dotNEXT St.Petersburg

Common Scalability Practices
that just work

Scalability as teenage sex

▪ Everyone talks about it
▪ Nobody really knows how to do it
▪ Everyone thinks everyone else is doing it
▪ So everyone claims they are doing it...

Yes

Yes
Mmm

NEED

Domain and app matching

No product or technology can magically make a system scalable and usable.

▪ Not because you save data to the cloud, your app
survives thousands of concurrent users.

▪ Not because of HTML5 users will enjoy the application.

Scalability

System's ability to handle a growing number of requests without incurring in significant performance loss and
failures.

Scalability became a problem with the advent of web

Queuing theory

A queue forms when frequency at which requests for a service are placed exceeds the time it takes to fully serve
a pending request.

❑ It’s about the performance of a single task
❑ It’s about expanding the system to perform more tasks at

the same time

Ensure the system…

▪ Doesn’t crash at launch
▪ Gives signs of degrading performance timely

Make sure you know the most common tools and
strategies to address scalability needs.

Strategies

Vertical vs. Horizontal

Vertical

Norm for 20 years – so long as DB was central point
Doesn’t scale beyond a point

Front caching is a good way to do it
• Proxy servers with load balancing capabilities
• Working outside the core code of the application
• Squid, Varnish, Nginx

Horizontal

Mostly an architectural point

Critical parts can be expanded without
• Damaging other parts
• Introducing inconsistencies / incongruent data

Horizontal

LOAD
BALANCING

MULTIPLE
INSTANCES

DATA
SHARDING

Real-world

Cloud apps are probably the easiest and most
effective way to achieve forms of scalability today.

But, at the same time, you can have well responsive
apps without re-architecting for the cloud.

Common Practices

Operational Practice #1

Remove bottlenecks
• Convoluted queries
• Long initialization steps
• Inefficient algorithms

HIGH throughput

MEDIUM cost

TIME consuming

DELICATE

Operational Practice #2

Move “some” requests to other servers
• CDN for static files
• Geographically distributed sites

LOW throughput

LOW cost

Quick

Improves the user’s perception of the system

Operational Practice #3

Output Caching
• By param
• By locale
• By custom data

 for example, multi-tenant sites

MEDIUM throughput

LOW cost

Quick

MEDIUM risk

Operational Practice #4

Data Caching
• Problematic with farms
• Auto-updatable internal cache
• Use of distributed caches
 Redis, ScaleOut, NCache

HIGH throughput

MEDIUM cost

Relatively Quick

DELICATE

Operational Practice #5

Proxy caching for example Varnish
• Installed in front of any web site
• Fully configurable
• Cache and load balancer in one

HIGH throughput

Relatively LOW cost

Relatively Quick

Architectural Practice #1

CQRS Architecture
▪ Optimize stacks differently HIGH throughput

HIGH cost

Time consuming

Presentation layer

Application layer

Infrastructure layer

Canonical layered architecture

Domain layer

Presentation layer

Application layer

Infrastructure layer

CQRS

Commands Queries

Domain layer

Data
access

+
DTO

Message-based business logic implementation

BUSINESS
DOMAIN

Command
Context #1

Query
Context #1

Command
Context #2

Query
Context #2

Command
Context #3

Query
Context #3

CQRS Design
DDD Analysis

CONTEXT
#1

CONTEXT
#2

CONTEXT
#3

Requirements

Architectural Practice #2

Single-tier and stateless server
• One server
• No session state
• Quick and easy to duplicate
• Behind a load balancer

HIGH throughput

Low cost

Quick

The point of the cloud

Architectural Practice #3

Cloud support
▪ On-demand servers
▪ Pay per use
▪ Configure easily
▪ No middleware costs
▪ Better failure policies

DISTRIBUTED CACHESERVER
SERVER

SERVERSERVER
DISTRIBUTED

CACHECACHE

PERSISTENT

Auto-update internal
cache Global cache

Architectural Practice #4

Session state out of the server
• Client cookies if applicable
• Distributed cache
• Azure blob storage

HIGH throughput

MEDIUM cost

Relatively quick

Tricky

PS: Best option for ASP.NET is probably using the Redis-based
provider for out-of-process session state.

Architectural Practice #5

Be aware of NoSQL and polyglot persistence
• Relational is OK … until it works
• Sharding/growth of data

Azure SQL
+ Many small tables <500GB each
+ No extra license costs
+ Zero TCO
+ HA automatically on

SQL Server in a VM
+ Fewer large tables >500GB each
+ Reuse existing licenses
+ More machine resources
+ HA and management is your own

FOLLOW

That’s All Folks!

facebook.com/naa4e

software2cents.wordpress.com

dino.esposito@jetbrains.com

@despos

Copyright Dino Esposito 2015

